Triggers for the formation of porphyry ore deposits in magmatic arcs (2024)

References

  1. Seward, T. M. & Barnes, H. L. in Geochemistry of Hydrothermal Ore Deposits (ed. Barnes, H. L.) 435–486 (Wiley, 1997).

    Google Scholar

  2. Yardley, B. W. D. Metal concentrations in crustal fluids and their relationship to ore formation. Econ. Geol. 100, 613–632 (2005).

    Article Google Scholar

  3. Stoffell, B., Appold, M. S., Wilkinson, J. J., McLean, N. A. & Jeffries, T. E. Geochemistry and evolution of MVT mineralising brines from the tri-state and northern Arkansas districts determined by LA-ICP-MS microanalysis of fluid inclusions. Econ. Geol. 103, 1411–1435 (2008).

    Article Google Scholar

  4. Wilkinson, J. J., Stoffell, B., Wilkinson, C. C., Jeffries, T. E. & Appold, M. S. Anomalously metal-rich fluids form hydrothermal ore deposits. Science 323, 764–767 (2009).

    Article Google Scholar

  5. Richard, A. et al. Giant uranium deposits formed from exceptionally uranium-rich acidic brines. Nature Geosci. 5, 142–146 (2012).

    Article Google Scholar

  6. Pudack, C., Halter, W. E., Heinrich, C. A. & Pettke, T. Evolution of magmatic vapor to gold-rich epithermal liquid: The porphyry to epithermal transition at Nevados de Famatina, northwest Argentina. Econ. Geol. 104, 449–477.

  7. Wilkinson, J. J., Simmons, S. F. & Stoffell, B. How metalliferous brines line Mexican epithermal veins with silver. Sci. Rep. 3, 2057 (2013).

    Article Google Scholar

  8. Heinrich, C. A., Günter, D., Audétat, A., Ulrich, T. & Frischknecht, R. Metal fractionation between magmatic brine and vapor determined by microanalysis of fluid inclusions. Geology 27, 755–758 (1999).

    Article Google Scholar

  9. Heinrich, C. A. How fast does gold trickle out of volcanoes? Science 314, 263–264 (2006).

    Article Google Scholar

  10. Audétat, A., Pettke, T., Heinrich, C. A. & Bodnar, R. J. The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions. Econ. Geol. 103, 877–908 (2008).

    Article Google Scholar

  11. Hedenquist, J. W. & Lowenstern, J. B. The role of magmas in the formation of hydrothermal ore deposits. Nature 370, 519–527 (1994).

    Article Google Scholar

  12. John, D. A. et al. in Mineral Deposit Models for Resource Assessment Ch. B (US Geological Survey Scientific Investigations Report 2010-5070-B, 2010).

    Google Scholar

  13. Sillitoe, R. H. Porphyry copper systems. Econ. Geol. 105, 3–41 (2010).

    Article Google Scholar

  14. Richards, J. P. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol. Rev. 40, 1–26 (2011).

    Article Google Scholar

  15. Cooke, D. R., Hollings, P., Wilkinson, J. J. & Tosdal, R. M. in Mineral Deposits (ed. Scott, S. D.) Ch. 11 (Treatise on Geochemistry 2nd edn, Elsevier, 2013).

    Google Scholar

  16. Chambefort, I., Dilles, J. H. & Kent, A. J. R. Anhydrite-bearing andesite and dacite as a source for sulfur in magmatic-hydrothermal mineral deposits. Geology 36, 719–722 (2008).

    Article Google Scholar

  17. Cooke, D. R., Hollings, P. & Walshe, J. L. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Econ. Geol. 100, 801–818 (2005).

    Article Google Scholar

  18. Winter, J. D. An Introduction to Igneous and Metamorphic Petrology (Prentice Hall, 2001).

    Google Scholar

  19. Burnham, C. W. in Geochemistry of Hydrothermal Ore Deposits 3rd edn (ed. Barnes, H. L.) 71–136 (Wiley, 1979).

    Google Scholar

  20. Shinohara, H., Kazahaya, K. & Lowenstern, J. B. Volatile transport in a convecting magma column: Implications for porphyry Mo mineralization. Geology 23, 1091–1094 (1995).

    Article Google Scholar

  21. Proffett, J. M. High Cu grades in porphyry Cu deposits and their relationship to emplacement depth of magmatic sources. Geology 37, 675–678 (2009).

    Article Google Scholar

  22. Dilles, J. H. The petrology of the Yerington batholith, Nevada: Evidence for the evolution of porphyry copper ore fluids. Econ. Geol. 82, 1750–1789 (1987).

    Article Google Scholar

  23. Candela, P. A. in Ore Deposition Associated with Magmas (eds Whitney, J. A. & Naldrett, A. J.) 223–233 (Reviews in Economic Geology 4, Society of Economic Geologists, 1989).

    Google Scholar

  24. Fournier, R. O. Hydrothermal processes related to movement of fluid from plastic to brittle rock in the magmatic-epithermal environment. Econ. Geol. 94, 1193–1211 (1999).

    Article Google Scholar

  25. Sillitoe, R. H. in Porphyry and Hydrothermal Copper and Gold Deposits - A Global Perspective (ed. Porter, T. M.) 21–34 (PGC, 1998).

    Google Scholar

  26. Richards, J. P. in Super Porphyry Copper and Gold Deposits - A Global Perspective Vol. 1 (ed. Porter, T. M.) 7–25 (PGC, 2005).

    Google Scholar

  27. Best, M. G. & Christiansen, E. H. Igneous Petrology (Blackwell Science, 2001).

    Google Scholar

  28. Manning, C. E. The chemistry of subduction-zone fluids. Earth Planet. Sci. Lett. 223, 1–16 (2004).

    Article Google Scholar

  29. Leeman, W. P. in Subduction: Top to Bottom (eds Bebout, G. E., Scholl, D. W., Kirby, S. H. & Platt, J. P.) 269–276 (American Geophysical Union, 1996).

    Google Scholar

  30. Dreyer, B. M., Morris, J. D. & Gill, B. Incorporation of subducted slab-derived sediment and fluid in arc magmas: B-Be-10Be-ɛNd systematics of the Kurile convergent margin, Russia. J. Petrol. 51, 1761–1782 (2010).

    Article Google Scholar

  31. Bureau, H. & Keppler, H. Complete miscibility between silicate melts and hydrous fluids in the upper mantle: Experimental evidence and geochemical implications. Earth Planet. Sci. Lett. 165, 187–196 (1999).

    Article Google Scholar

  32. Kessell, R., Schmidt, M. W., Ulmer, P. & Pettke, T. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437, 724–727 (2005).

    Article Google Scholar

  33. Navon, O., Hutcheon, I. D., Rossman, G. R. & Wasserburg, G. J. Mantle-derived fluids in diamond micro-inclusions. Nature 335, 784–789 (1988).

    Article Google Scholar

  34. Schiano, P. & Clocchiatti, R. Worldwide occurrence of silica-rich melts in sub-continental and sub-oceanic mantle minerals. Nature 368, 621–624 (1994).

    Article Google Scholar

  35. Wulff-Pedersen, E., Neumann, E-R. & Jensen, B. B. The upper mantle under La Palma, Canary Islands: Formation of Si-K-Na-rich melt and its importance as a metasomatic agent. Contrib. Mineral. Petrol. 125, 113–139 (1996).

    Article Google Scholar

  36. Mungall, J. E. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 30, 915–918 (2002).

    Article Google Scholar

  37. Alt, J. C., Shanks, W. C. & Jackson, M. C. Cycling of sulfur in subduction zones: The geochemistry of sulfur in the Mariana Island Arc and back-arc trough. Earth Planet. Sci. Lett. 119, 477–494 (1993).

    Article Google Scholar

  38. Gill, J. B. Orogenic Andesites and Plate Tectonics (Springer, 1981).

    Book Google Scholar

  39. McInnes, B. I. A., McBride, J. S., Evans, N. J., Lambert, D. D. & Andrew, A. S. Osmium isotope constraints on ore metal recycling in subduction zones. Science 286, 512–516 (1999).

    Article Google Scholar

  40. Barnes, S-J. & Maier, W. D. in Dynamic Processes in Magmatic Ore Deposits and their Application in Mineral Exploration (eds Keays, R. R., Lesher, C. M., Lightfoot, P. C. & Farrow, C. E. G.) 69–106 (Short Course 13, Geological Association of Canada, 1999).

    Google Scholar

  41. Jugo, P. J. Sulfur content at sulfide saturation in oxidized magmas. Geology 37, 415–418 (2009).

    Article Google Scholar

  42. Lee, C-T. A. et al. Copper systematics in arc magmas and implications for crust-mantle differentiation. Science 336, 64–68 (2012).

    Article Google Scholar

  43. DePaolo, D. J. Trace-element and isotopic effects of combined wallrock assimilation and fractional crystallisation. Earth Planet. Sci. Lett. 53, 189–202 (1981).

    Article Google Scholar

  44. Hildreth, W. & Moorbath, S. Crustal contribution to arc magmatism in the Andes of central Chile. Contrib. Mineral. Petrol. 98, 455–489 (1988).

    Article Google Scholar

  45. Annen, C., Blundy, J. & Sparks, R. S. J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47, 505–539 (2006).

    Article Google Scholar

  46. Core, D. P., Kesler, S. E. & Essene, E. J. Unusually Cu-rich magmas associated with giant porphyry copper deposits: Evidence from Bingham, Utah. Geology 34, 41–44 (2006).

    Article Google Scholar

  47. Farmer, G. L. & DePaolo, D. J. Origin of Mesozoic and Tertiary granite in the western United States and implications for pre-Mesozoic crustal structure: 2. Nd and Sr isotopic studies of unmineralized and Cu-mineralized and Mo-mineralized granite in the Precambrian craton. J. Geophys. Res. 89, 141–160 (1984).

    Article Google Scholar

  48. Pettke, T., Oberli, F. & Heinrich C. A. The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions. Earth Planet. Sci. Lett. 296, 267–277 (2010).

    Article Google Scholar

  49. Candela, P. A. & Piccoli, P. M. in Economic Geology 100th Anniversary Volume (eds Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J. & Richards, J. P.) 25–38 (Society of Economic Geologists, 2005).

    Google Scholar

  50. Wallace, P. J. Volatiles in subduction zone magmas: Concentrations and fluxes based on melt inclusion and volcanic gas data. J. Volcanol. Geotherm. Res. 140, 217–240 (2005).

    Article Google Scholar

  51. Pokrovski, G. S., Borisova, A. Y. & Harrichoury, J-C. The effect of sulfur on vapour-liquid fractionation of metals in hydrothermal systems. Earth Planet. Sci. Lett. 266, 345–362 (2008).

    Article Google Scholar

  52. Chiaradia, M., Ulianov, A., Kouzmanov, K. & Be, B. Why large porphyry Cu deposits like high Sr/Y magmas? Sci. Rep. 2, 685 (2012).

    Article Google Scholar

  53. Matzel, J. E. P., Bowring, S. A. & Miller, R. B. Time scales of pluton construction at differing crustal levels; examples from the Mount Stuart and Tenpeak intrusions, north Cascades. Geol. Soc. Am. Bull. 118, 1412–1430 (2006).

    Article Google Scholar

  54. Schaltegger, U. et al. Zircon and titanite recording 1.5 million years of magma accretion, crystallization and initial cooling in a composite pluton (southern Adamello batholith, northern Italy). Earth Planet. Sci. Lett. 286, 208–218 (2009).

    Article Google Scholar

  55. Schoene, B. et al. Rates of magma differentiation and emplacement in a ballooning pluton recorded by U–Pb TIMS-TEA, Adamello batholith, Italy. Earth Planet. Sci. Lett. 355–356, 162–173 (2012).

    Article Google Scholar

  56. Halter, W. E., Heinrich, C. A. & Pettke, T. Magma evolution and the formation of porphyry Cu-Au ore fluids: Evidence from silicate and sulfide melt inclusions. Miner. Deposita 39, 845–863 (2005).

    Article Google Scholar

  57. Harris, A. C. et al. Multimillion year thermal history of a porphyry copper deposit: Application of U-Pb, 40Ar/39Ar and (U-Th)/He chronometers, Bajo de la Alumbrera copper-gold deposit, Argentina. Miner. Deposita 43, 295–314 (2008).

    Article Google Scholar

  58. von Quadt, A. et al. Zircon crystallization and the lifetimes of ore-forming magmatic-hydrothermal systems. Geology 39, 731–734 (2011).

    Article Google Scholar

  59. Glazner, A. F., Bartley, J. M., Coleman, D. S., Gray, W. & Taylor, Z. T. Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14, 4–11 (2004).

    Article Google Scholar

  60. Sparks, R. S. J. & Marshall, L. A. Thermal and mechanical constraints on mixing between mafic and silicic magmas. J. Volcanol. Geotherm. Res. 29, 99–124 (1986).

    Article Google Scholar

  61. Hattori, K. & Keith, J. D. Contribution of mafic melt to porphyry copper mineralization: Evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA. Miner. Deposita 36, 799–806 (2001).

    Article Google Scholar

  62. Candela, P. A. & Holland, H. D. A mass transfer model for copper and molybdenum in magmatic hydrothermal systems: The origin of porphyry-type ore deposits. Econ. Geol. 81, 1–19 (1986).

    Article Google Scholar

  63. Webster, J. D. & Botcharnikov, R. E. in Sulfur in Magmas and Melts: Its Importance for Natural and Technical Processes (eds Behrens, H. & Webster, J. D.) 247–283 (Reviews in Mineralogy and Geochemistry 73, Mineralogical Society of America, 2011).

    Book Google Scholar

  64. Seedorff, E. et al. in Economic Geology 100th Anniversary Volume (eds Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J. & Richards, J. P.) 251–298 (Society of Economic Geologists, 2005).

    Google Scholar

  65. Landtwing, M. R. et al. The Bingham Canyon porphyry Cu-Mo-Au deposit: III. Zoned copper-gold ore deposition by magmatic vapor expansion. Econ. Geol. 105, 91–118 (2010).

    Article Google Scholar

  66. Williams-Jones, A. E., Migdisov, A. A., Archibald, S. M. & Xiao, Z. F. in Water-Rock Interactions, Ore Deposits, and Environmental Geochemistry (ed Hellman, R. & Wood, S. A.) 279–305 (Geochemical Society Special Publication 7, Geochemical Society, 2002).

    Google Scholar

  67. Pokrovski, G. S., Roux, J. & Harrichoury, J. C. Fluid density control on vapor-liquid partitioning of metals in hydrothermal systems. Geology 33, 657–660 (2005).

    Article Google Scholar

  68. Weis, P., Driesner, T. & Heinrich, C. A. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes. Science 338, 1613–1616 (2012).

    Article Google Scholar

  69. Hemley, J. J. & Hunt, J. P. Hydrothermal ore-forming processes in the light of studies in rock-buffered systems: II. Some general geological applications. Econ. Geol. 87, 23–43 (1992).

    Article Google Scholar

  70. Ingebritsen, S. E. & Manning, C. E. Permeability of the continental crust: Dynamic variations inferred from seismicity and metamorphism. Geofluids 10, 193–205 (2010).

    Google Scholar

  71. Richards, J. P. Giant ore deposits formed by optimal alignments and combinations of geological processes. Nature Geosci. http://dx.doi.org/10.1038/ngeo1920 (2013).

  72. Halter, W. E., Pettke, T., Heinrich, T. & Heinrich, C. A. The origin of Cu/Au ratios in porphyry-type ore deposits. Science 296, 1844–1846 (2002).

    Article Google Scholar

  73. Harris, A. C., Kamenetsky, V. S., White, N. C., van Achterbergh, E. & Ryan, C. G. Melt inclusions in veins: Linking magmas and porphyry Cu deposits. Science 302, 2109–2111 (2003).

    Article Google Scholar

  74. Lickfold, V., Cooke, D. R., Crawford, A. J. & Fanning, C. Shoshonitic magmatism and the formation of the Northparkes porphyry Cu-Au deposits, New South Wales. Aus. J. Earth Sci. 54, 417–444 (2007).

    Article Google Scholar

  75. Nadeau, O., Williams-Jones, A. E. & Stix, J. Sulphide magma as a source of metals in arc-related magmatic hydrothermal ore fluids. Nature Geosci. 3, 501–505 (2005).

    Article Google Scholar

  76. Keith, J. D. et al. The role of magmatic sulfides and mafic alkaline magmas in the Bingham and Tintic mining districts, Utah. J. Petrol. 38, 1679–1690 (1997).

    Article Google Scholar

  77. Rowland, M. R. & Wilkinson, J. J. in Water-Rock Interaction IX (eds Arehart, G. B. & Hulston, J. R.) 569–573 (Balkema, 1998).

    Google Scholar

  78. Halter, W. E. et al. From andesitic volcanism to the formation of a porphyry Cu-Au mineralizing magma chamber: The Farallon Negro volcanic complex, northwestern Argentina. J. Volcanol. Geotherm. Res. 136, 1–30 (2004).

    Article Google Scholar

  79. Zajacz, Z. & Halter, W. Copper transport by high temperature, sulfur-rich magmatic vapor: Evidence from silicate melt and vapor inclusions in a basaltic andesite from the Villarrica volcano (Chile). Earth Planet. Sci. Lett. 282, 115–121 (2009).

    Article Google Scholar

  80. Sillitoe, R. H. Major gold deposits and belts of the North and South American Cordillera: Distribution, tectonomagmatic settings, and metallogenic considerations. Econ. Geol. 103, 663–687 (2008).

    Article Google Scholar

  81. Rohrlach, B. D. & Loucks, R. R. in Super Porphyry Copper and Gold Deposits - A Global Perspective Vol. 2 (ed. Porter, T. M.) 369–407 (PGC, 2005).

    Google Scholar

  82. Loucks, R. Chemical characteristics, geodynamic settings, and petrogenesis of copper ore-forming arc magmas. CET Quarterly News 19, 1–10 (2012).

    Google Scholar

  83. Rooney, T. O., Franceschi, P. & Hall, C. M. Water-saturated magmas in the Panama Canal region: A precursor to adakite-like magma generation? Contrib. Mineral. Petrol. 161, 373–388 (2011).

    Article Google Scholar

  84. Simon, A. C. & Ripley, E. M. in Sulfur in Magmas and Melts: Its Importance for Natural and Technical Processes (eds Behrens, H. & Webster, J. D.) 513–578 (Reviews in Mineralogy and Geochemistry 73, Mineralogical Society of America, 2011).

    Book Google Scholar

  85. Simon, A. C., Pettke, T., Candela, P. A., Piccoli, P. M. & Heinrich, C. A. Copper partitioning in a melt-vapor-brine-magnetite-pyrrhotite assemblage. Geochim. Cosmochim. Acta 70, 5583–5600 (2006).

    Article Google Scholar

  86. Jenner, F. E., O'Neill, H. St C., Arculus, R. J. & Mavrogenes, J. A. The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu. J. Petrol. 51, 2445–2464 (2010).

    Article Google Scholar

  87. Bell, A., Simon, A. & Guillong, M. Experimental constraints on Pt, Pd, and Au partitioning in silicate melt-sulfide-oxide-aqueous fluid systems at 800°C, 150 MPa, and variable sulfur fugacity. Geochim. Cosmochim. Acta 73, 5778–5792 (2009).

    Article Google Scholar

  88. Larocque, A. C. L., Stimac, J. A., Keith, J. D. & Huminicki, M. A. E. Evidence for open-system behavior in immiscible Fe-S-O liquids in silicate magmas: Implications for contributions of metals and sulfur to ore-forming fluids. Can. Mineral. 38, 1233–1249 (2000).

    Article Google Scholar

  89. Ulrich, T., Günther, D. & Heinrich, C. A. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature 399, 676–679 (1999).

    Article Google Scholar

  90. Rusk, B. G., Reed, M. H., Dilles, J. H., Klemm, L. M. & Heinrich, C. A. Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte, MT. Chem. Geol. 210, 173–199 (2004).

    Article Google Scholar

  91. Wilkinson, J. J. et al. Ore fluid chemistry in super-giant porphyry copper deposits. Proc. PACRIM 2008 Congress 295–298 (Australasian Institute of Mining and Metallurgy, 2008).

  92. Bell, A. S., Simon, A. & Guillong, M. Gold solubility in oxidized and reduced, water-saturated mafic melt. Geochim. Cosmochim. Acta 75, 1718–1732 (2011).

    Article Google Scholar

  93. Sun, W., Arculus, R. J., Kamenetsky, V. S. & Binns, R. A. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature 431, 975–978 (2004).

    Article Google Scholar

  94. Stanton, R. L. Ore Elements in Arc Lavas (Oxford Univ. Press, 1994).

    Google Scholar

  95. Cloos, M. Bubbling magma chambers, cupolas, and porphyry copper deposits. Int. Geol. Rev. 43, 285–311 (2001).

    Article Google Scholar

  96. Mathur, R., Titley, S., Ruiz, J., Gibbins, S. & Friehauf, K. A Re-Os isotope study of sedimentary rocks and copper-gold ores from the Ertsberg district, West Papua, Indonesia. Ore Geol. Rev. 26, 207–226 (2005).

    Article Google Scholar

  97. Crerar, D. A. & Barnes, H. L. Ore solution chemistry V: Solubilities of chalcopyrite and chalcocite assemblages in hydrothermal solution at 200° to 350°C. Econ. Geol. 71, 772–794 (1976).

    Article Google Scholar

  98. Audétat, A., Günther, D. & Heinrich, C. A. Causes for large-scale metal zonation around mineralized plutons: Fluid inclusion LA-ICP-MS evidence from the Mole Granite, Australia. Econ. Geol. 95, 1563–1581 (2000).

    Article Google Scholar

  99. Stoffell, B., Wilkinson, J. J. & Jeffries, T. E. Metal transport and deposition in hydrothermal veins revealed by 213nm UV laser ablation microanalysis of single fluid inclusions. Am. J. Sci. 304, 533–557 (2004).

    Article Google Scholar

Download references

Triggers for the formation of porphyry ore deposits in magmatic arcs (2024)

References

Top Articles
Trente recettes à préparer à l'avance : entrée, plats et dessert - Recettes faciles - Un déjeuner de soleil
Pâte à tarte à l'épeautre et au Pavot - Recette IG bas
Endicott Final Exam Schedule Fall 2023
Ascension St. Vincent's Lung Institute - Riverside
Jodie Sweetin Breast Reduction
WWE Bash In Berlin 2024: CM Punk Winning And 5 Smart Booking Decisions
KMS ver. 1.2.355 – Haste & Tactical Relay
Unlock the Fun: A Beginner's Guide to Playing TBG95 Unblocked Games at School and Beyond
Tyson Employee Paperless
Savage Model 110 Serial Number Lookup
Northwell.myexperience
Cool Math Games Unblocked 76
Dow Futures Pre Market Cnn
Descargar AI Video Editor - Size Reducer para PC - LDPlayer
Uca Cheerleading Nationals 2023
Panic at the disco: Persona 4 Dancing All Night review | Technobubble
Samanthaschwartz Fapello
Costco Gas Price City Of Industry
Baca's Funeral Chapels & Sunset Crematory Las Cruces Obituaries
A Man Called Otto Showtimes Near Palm Desert
Indian Restaurants In Cape Cod
Theater X Orange Heights Florida
MySDMC SSO: Manatee County’s Digital Educational Access
Bj타리
5162635626
Toonily.cim
How to Learn Brazilian Jiu‐Jitsu: 16 Tips for Beginners
Stuckey Furniture
Does Wanda Sykes Use A Cane
Nenas Spa San Salvador
Societe Europeenne De Developpement Du Financement
9294027542
toledo farm & garden services - craigslist
Jcpenney Salon Salinas
Live Gold Spot Price Chart | BullionVault
Sodexo North Portal
Ice Hockey Dboard
Huskersillustrated Husker Board
Craigslist Cars Merced Ca
Meg 2: The Trench Showtimes Near Phoenix Theatres Laurel Park
The Menu Showtimes Near Regal Edwards Ontario Mountain Village
Cnas Breadth Requirements
Fetid Emesis
The Hollis Co Layoffs
Fishing Report - Southwest Zone
Kirstin Kresse
File Annual Report - Division of Corporations
Ucf Cost Calculator
Grand Rapids, Michigan Aviation Weather Report and Forecast
Greythr Hexaware Bps
Baja Boats For Sale On Craigslist
Latest Posts
Article information

Author: Roderick King

Last Updated:

Views: 5981

Rating: 4 / 5 (51 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Roderick King

Birthday: 1997-10-09

Address: 3782 Madge Knoll, East Dudley, MA 63913

Phone: +2521695290067

Job: Customer Sales Coordinator

Hobby: Gunsmithing, Embroidery, Parkour, Kitesurfing, Rock climbing, Sand art, Beekeeping

Introduction: My name is Roderick King, I am a cute, splendid, excited, perfect, gentle, funny, vivacious person who loves writing and wants to share my knowledge and understanding with you.